RadField3D is an open-source application based on Geant4 Monte-Carlo simulation, designed to generate three-dimensional radiation field datasets for dosimetry. This tool is particularly useful in the field of radiation-protection dosimetry for medical applications. RadField3D introduces a fast, machine-interpretable data format with a Python API, facilitating easy integration into neural network research. The primary goal of RadField3D is to explore alternative radiation simulation methods using deep learning. By providing a robust dataset and a flexible data format, RadField3D enables researchers to develop and test new deep learning models for radiation dosimetry, potentially leading to more accurate and efficient radiation protection strategies in medical settings.
Monte-Carlo simulation
Not specified
RadField3D dataset
Not specified
Not specified
No
No
Open-source, machine-interpretable data format, Python API
No
Not specified
Not specified
Not specified
Not specified
Not specified
Not specified
Yes
Not specified
Not specified
Not specified
Not specified
Not specified
Not specified
Not specified
Not specified
Medical, Radiation Protection
Radiation dosimetry, medical applications
Not specified
Not specified
Not specified
Not specified
Not specified
Not specified
No
Not specified
Not specified
No
Not specified
Not specified
Not specified
Not specified
Not specified
Yes
Python API for integration
Not specified
0.00
Not specified
Not specified
01/01/1970
01/01/1970
Not specified
Not specified
Yes