Sequential Central Planning for Dec-POMDPs

Decentralized partially observable Markov decision processes (Dec-POMDPs) are a framework for modeling decision-making in multi-agent systems where each agent has limited information about the environment. The traditional approach to solving Dec-POMDPs involves centralized training for decentralized execution, which can be computationally expensive. The sequential central planning approach offers a more scalable alternative by allowing a central planner to reason about sequential-move statistics rather than simultaneous-move ones. This approach leverages the Bellman's principle of optimality and introduces three new properties: reasoning with sequential-move statistics, proving that epsilon-optimal value functions are piecewise linear and convex, and reducing the complexity of backup operators from double exponential to polynomial. This paradigm enables the use of single-agent methods, such as the SARSA algorithm, while preserving convergence guarantees. Experiments have shown that this approach outperforms epsilon-optimal simultaneous-move solvers, making it a promising direction for efficient planning and reinforcement learning in multi-agent systems.

Category: Artificial Intelligence
Subcategory: Reinforcement Learning
Tags: Dec-POMDPsmulti-agent systemssequential central planning
AI Type: Reinforcement Learning
Programming Languages: Not specified
Frameworks/Libraries: Not specified
Application Areas: Multi-agent decision-making
Manufacturer Company: Not specified
Country: Not specified
Algorithms Used

SARSA algorithm, Bellman's principle of optimality

Model Architecture

Not specified

Datasets Used

Not specified

Performance Metrics

Epsilon-optimal value functions

Deployment Options

Not specified

Cloud Based

No

On Premises

No

Features

Scalability, reduced complexity, single-agent method compatibility

Enterprise

No

Hardware Requirements

Not specified

Supported Platforms

Not specified

Interoperability

Not specified

Security Features

Not specified

Compliance Standards

Not specified

Certifications

Not specified

Open Source

No

Source Code URL

http://Not specified

Documentation URL

http://Not specified

Community Support

Not specified

Contributors

Not specified

Training Data Size

Not specified

Inference Latency

Not specified

Energy Efficiency

Not specified

Explainability Features

Not specified

Ethical Considerations

Not specified

Known Limitations

Not specified

Industry Verticals

Not specified

Use Cases

Not specified

Customer Base

Not specified

Integration Options

Not specified

Scalability

Not specified

Support Options

Not specified

SLA

Not specified

User Interface

Not specified

Multi-Language Support

No

Localization

Not specified

Pricing Model

Not specified

Trial Availability

No

Partner Ecosystem

Not specified

Patent Information

Not specified

Regulatory Compliance

Not specified

Version

Not specified

Website URL

http://Not specified

Service Type

Not specified

Has API

No

API Details

Not specified

Business Model

Not specified

Price

0.00

Currency

Not specified

License Type

Not specified

Release Date

01/01/1970

Last Update Date

01/01/1970

Contact Email

Not specified

Contact Phone

Not specified

Social Media Links

http://Not specified

Other Features

Not specified

Published

Yes