Spiked Wigner Model Detection

The spiked Wigner model is a statistical model used to detect the presence of a signal in a noisy environment. It is particularly relevant in scenarios where the noise is non-Gaussian, and the signal is drawn from a Rademacher prior. The model involves a rank-one matrix with a signal component added to a Wigner matrix, which represents the noise. The challenge is to detect the signal when the signal-to-noise ratio (SNR) is below a certain threshold. Below this threshold, the log likelihood ratio (LR) of the spiked model against the null model converges to a Gaussian distribution. This threshold is considered optimal because reliable detection is possible using a transformed principal component analysis (PCA) above it. The model also provides insights into the sum of Type-I and Type-II errors of the likelihood ratio test, offering a comprehensive understanding of the detection capabilities in such noisy environments.

Category: Artificial Intelligence
Subcategory: Statistical Learning
Tags: spiked Wigner modelsignal detectionnon-Gaussian noise
AI Type: Statistical Learning
Programming Languages: Not specified
Frameworks/Libraries: Not specified
Application Areas: Signal detection in noisy environments
Manufacturer Company: Not specified
Country: Not specified
Algorithms Used

Transformed principal component analysis (PCA)

Model Architecture

Rank-one spiked model

Datasets Used

Not specified

Performance Metrics

Type-I and Type-II error rates

Deployment Options

Not specified

Cloud Based

No

On Premises

No

Features

Gaussian convergence of log likelihood ratio, optimal detection threshold

Enterprise

No

Hardware Requirements

Not specified

Supported Platforms

Not specified

Interoperability

Not specified

Security Features

Not specified

Compliance Standards

Not specified

Certifications

Not specified

Open Source

No

Source Code URL

http://Not specified

Documentation URL

http://Not specified

Community Support

Not specified

Contributors

Not specified

Training Data Size

Not specified

Inference Latency

Not specified

Energy Efficiency

Not specified

Explainability Features

Not specified

Ethical Considerations

Not specified

Known Limitations

Detection threshold dependency

Industry Verticals

Not specified

Use Cases

Not specified

Customer Base

Not specified

Integration Options

Not specified

Scalability

Not specified

Support Options

Not specified

SLA

Not specified

User Interface

Not specified

Multi-Language Support

No

Localization

Not specified

Pricing Model

Not specified

Trial Availability

No

Partner Ecosystem

Not specified

Patent Information

Not specified

Regulatory Compliance

Not specified

Version

Not specified

Website URL

http://Not specified

Service Type

Not specified

Has API

No

API Details

Not specified

Business Model

Not specified

Price

0.00

Currency

Not specified

License Type

Not specified

Release Date

01/01/1970

Last Update Date

01/01/1970

Contact Email

Not specified

Contact Phone

Not specified

Social Media Links

http://Not specified

Other Features

Not specified

Published

Yes