ManiBox is a novel approach in robotic grasping that addresses the challenge of spatial generalization in manipulation tasks. Traditional models often struggle with accurately positioning objects for grasping due to the extensive data requirements needed for spatial understanding. ManiBox overcomes these challenges by employing a state-based policy generalization method within a simulation-based teacher-student framework. The teacher policy generates scalable simulation data using bounding boxes, which uniquely determine the spatial positions of objects. The student policy then uses these low-dimensional spatial states to enable zero-shot transfer to real robots. This approach significantly improves spatial grasping generalization and adaptability to diverse objects and backgrounds. Empirical studies have shown that ManiBox's performance scales with data volume according to a power law, and the success rate of grasping follows Michaelis-Menten kinetics relative to data volume, indicating a saturation effect as data increases.
Teacher-student framework, bounding box guidance
Not specified
Simulation data
Spatial grasping generalization, adaptability
Not specified
No
No
Zero-shot transfer, improved spatial generalization
No
Not specified
Not specified
Not specified
Not specified
Not specified
Not specified
No
Not specified
Not specified
Not specified
Not specified
Not specified
Not specified
Not specified
Not specified
Not specified
Not specified
Not specified
Not specified
Not specified
Not specified
Not specified
Not specified
No
Not specified
Not specified
No
Not specified
Not specified
Not specified
Not specified
Not specified
No
Not specified
Not specified
0.00
Not specified
Not specified
01/01/1970
01/01/1970
Not specified
Not specified
Yes