SEG-SAM is a unified medical image segmentation model that enhances performance by incorporating semantic medical knowledge. It addresses the challenges of transferring the Segment Anything Model (SAM) to the medical domain, where images often have substantial inter-category overlaps. SEG-SAM introduces a semantic-aware decoder and a text-to-vision semantic module to improve segmentation accuracy.
Semantic segmentation, text-to-vision semantic module
Semantic-aware decoder, text-to-vision module
Not specified
Outperforms state-of-the-art SAM-based methods
Not specified
No
Yes
Semantic-aware decoder, text-to-vision module, improved segmentation
Yes
Not specified
Not specified
Not specified
Not specified
Not specified
Not specified
No
Not specified
Not specified
Not specified
Not specified
Not specified
Not specified
Not specified
Not specified
Healthcare, Medical Imaging
Medical image segmentation, healthcare diagnostics
Not specified
Not specified
High
Not specified
Not specified
Not specified
No
Not specified
Not specified
No
Not specified
Not specified
Not specified
Not specified
Not specified
No
Not specified
Not specified
0.00
Not specified
Not specified
01/01/1970
01/01/1970
Not specified
Not specified
Yes