Echo is a simulation framework designed to address the challenges of large-scale distributed training in machine learning. It focuses on tracing runtime training workloads, estimating collective communication, and accounting for computation slowdown due to interference. Echo achieves a low error rate in training step estimation, making it a valuable tool for managing massive ML clusters.
Simulation-based algorithms
Not specified
Not specified
8% error in training step estimation
Not specified
No
Yes
Low error rate, efficient simulation, large-scale training management
Yes
96-GPU H800 cluster
Not specified
Not specified
Not specified
Not specified
Not specified
No
Not specified
Not specified
Not specified
Not specified
Not specified
Not specified
Not specified
Not specified
Technology, Research
Simulation of distributed training, ML cluster management
Not specified
Not specified
High
Not specified
Not specified
Not specified
No
Not specified
Not specified
No
Not specified
Not specified
Not specified
Not specified
Not specified
No
Not specified
Not specified
0.00
Not specified
Not specified
01/01/1970
01/01/1970
Not specified
Not specified
Yes